- Diseases
- Acoustic Neuroma (14)
- Adrenal Gland Tumor (24)
- Anal Cancer (68)
- Anemia (2)
- Appendix Cancer (16)
- Bile Duct Cancer (26)
- Bladder Cancer (72)
- Brain Metastases (28)
- Brain Tumor (230)
- Breast Cancer (720)
- Breast Implant-Associated Anaplastic Large Cell Lymphoma (2)
- Cancer of Unknown Primary (4)
- Carcinoid Tumor (8)
- Cervical Cancer (158)
- Colon Cancer (164)
- Colorectal Cancer (114)
- Endocrine Tumor (4)
- Esophageal Cancer (44)
- Eye Cancer (36)
- Fallopian Tube Cancer (8)
- Germ Cell Tumor (4)
- Gestational Trophoblastic Disease (2)
- Head and Neck Cancer (8)
- Kidney Cancer (126)
- Leukemia (344)
- Liver Cancer (50)
- Lung Cancer (288)
- Lymphoma (284)
- Mesothelioma (14)
- Metastasis (30)
- Multiple Myeloma (98)
- Myelodysplastic Syndrome (60)
- Myeloproliferative Neoplasm (4)
- Neuroendocrine Tumors (16)
- Oral Cancer (100)
- Ovarian Cancer (172)
- Pancreatic Cancer (164)
- Parathyroid Disease (2)
- Penile Cancer (14)
- Pituitary Tumor (6)
- Prostate Cancer (144)
- Rectal Cancer (58)
- Renal Medullary Carcinoma (6)
- Salivary Gland Cancer (14)
- Sarcoma (238)
- Skin Cancer (296)
- Skull Base Tumors (56)
- Spinal Tumor (12)
- Stomach Cancer (62)
- Testicular Cancer (28)
- Throat Cancer (92)
- Thymoma (6)
- Thyroid Cancer (96)
- Tonsil Cancer (30)
- Uterine Cancer (80)
- Vaginal Cancer (16)
- Vulvar Cancer (20)
- Cancer Topic
- Adolescent and Young Adult Cancer Issues (20)
- Advance Care Planning (10)
- Biostatistics (2)
- Blood Donation (18)
- Bone Health (8)
- COVID-19 (362)
- Cancer Recurrence (120)
- Childhood Cancer Issues (120)
- Clinical Trials (632)
- Complementary Integrative Medicine (24)
- Cytogenetics (2)
- DNA Methylation (4)
- Diagnosis (230)
- Epigenetics (6)
- Fertility (62)
- Follow-up Guidelines (2)
- Health Disparities (14)
- Hereditary Cancer Syndromes (124)
- Immunology (18)
- Li-Fraumeni Syndrome (8)
- Mental Health (118)
- Molecular Diagnostics (8)
- Pain Management (62)
- Palliative Care (8)
- Pathology (10)
- Physical Therapy (18)
- Pregnancy (18)
- Prevention (912)
- Research (396)
- Second Opinion (74)
- Sexuality (16)
- Side Effects (608)
- Sleep Disorders (10)
- Stem Cell Transplantation Cellular Therapy (216)
- Support (402)
- Survivorship (322)
- Symptoms (184)
- Treatment (1788)
Researchers identify genetic cause of 15% of colorectal cancers
BY Ron Gilmore
2 minute read | Published August 10, 2016
Medically Reviewed | Last reviewed by an MD Anderson Cancer Center medical professional on August 10, 2016
Up to 15% of colorectal cancers show a genetic mutation known as DNA mismatch repair deficiency, or dMMR. Until now, little has been known about how the mutation behaves in rectal cancer patients, what causes dMMR, and which treatments may be most effective.
A study at MD Anderson uncovered new data about dMMR’s hereditary basis in rectal cancer which may guide physicians in diagnoses, treatment and preventive measures, and in exploring potential new therapy options. Results from the study were reported in the July 18 online issue of the Journal of Clinical Oncology.
The study provided a benchmark for current treatment approaches including chemotherapy and surgery and confirmed dMMR patients likely are to have a good prognosis. It also highlighted the need to pay attention to long-term care after surviving rectal cancer.
DNA mismatch repair is the body’s method for repairing mutations or gene defects that occur during cell division. Sometimes things go awry with this vital tool, resulting in increased mutations and cancer. Four genes — MLH1, MSH2, MSH6 and PMS2 — previously have been associated with DNA mismatch repair. Until now, researchers believed MLH1 and MSH2 were the main culprits causing the DNA repair machinery to break down. The MD Anderson study found MSH2 and MSH6 to be most commonly found among dMMR rectal cancer patients.
The paper’s author believes such genetic information allows for a more tailored approach to diagnosis and treatment known as precision medicine, which is the focus of President Obama’s Precision Medicine Initiative that launched in 2015. Precision medicine encourages therapeutic options tailored to specific characteristics, such as a person’s genetic makeup, or the genetic profile of an individual’s tumor.
“Our paper provides a perfect illustration of how the power of precision medicine can be realized,” said Y. Nancy You, M.D., associate professor of Surgical Oncology. “This new genetic understanding of dMMR provides immediate implications for telling patients how well they will do long term and for choosing the best surgical and chemotherapy options.”
Read more about this study in MD Anderson's newsroom.
