- Diseases
- Acoustic Neuroma (14)
- Adrenal Gland Tumor (24)
- Anal Cancer (66)
- Anemia (2)
- Appendix Cancer (16)
- Bile Duct Cancer (28)
- Bladder Cancer (68)
- Brain Metastases (28)
- Brain Tumor (228)
- Breast Cancer (714)
- Breast Implant-Associated Anaplastic Large Cell Lymphoma (2)
- Cancer of Unknown Primary (4)
- Carcinoid Tumor (8)
- Cervical Cancer (154)
- Colon Cancer (164)
- Colorectal Cancer (110)
- Endocrine Tumor (4)
- Esophageal Cancer (42)
- Eye Cancer (36)
- Fallopian Tube Cancer (6)
- Germ Cell Tumor (4)
- Gestational Trophoblastic Disease (2)
- Head and Neck Cancer (6)
- Kidney Cancer (124)
- Leukemia (344)
- Liver Cancer (50)
- Lung Cancer (288)
- Lymphoma (284)
- Mesothelioma (14)
- Metastasis (30)
- Multiple Myeloma (98)
- Myelodysplastic Syndrome (60)
- Myeloproliferative Neoplasm (4)
- Neuroendocrine Tumors (16)
- Oral Cancer (100)
- Ovarian Cancer (170)
- Pancreatic Cancer (166)
- Parathyroid Disease (2)
- Penile Cancer (14)
- Pituitary Tumor (6)
- Prostate Cancer (144)
- Rectal Cancer (58)
- Renal Medullary Carcinoma (6)
- Salivary Gland Cancer (14)
- Sarcoma (236)
- Skin Cancer (294)
- Skull Base Tumors (56)
- Spinal Tumor (12)
- Stomach Cancer (60)
- Testicular Cancer (28)
- Throat Cancer (90)
- Thymoma (6)
- Thyroid Cancer (98)
- Tonsil Cancer (30)
- Uterine Cancer (78)
- Vaginal Cancer (14)
- Vulvar Cancer (18)
- Cancer Topic
- Adolescent and Young Adult Cancer Issues (20)
- Advance Care Planning (10)
- Biostatistics (2)
- Blood Donation (18)
- Bone Health (8)
- COVID-19 (362)
- Cancer Recurrence (120)
- Childhood Cancer Issues (120)
- Clinical Trials (622)
- Complementary Integrative Medicine (24)
- Cytogenetics (2)
- DNA Methylation (4)
- Diagnosis (226)
- Epigenetics (6)
- Fertility (62)
- Follow-up Guidelines (2)
- Health Disparities (14)
- Hereditary Cancer Syndromes (122)
- Immunology (18)
- Li-Fraumeni Syndrome (8)
- Mental Health (118)
- Molecular Diagnostics (8)
- Pain Management (64)
- Palliative Care (8)
- Pathology (10)
- Physical Therapy (18)
- Pregnancy (18)
- Prevention (886)
- Research (388)
- Second Opinion (74)
- Sexuality (16)
- Side Effects (602)
- Sleep Disorders (10)
- Stem Cell Transplantation Cellular Therapy (216)
- Support (404)
- Survivorship (322)
- Symptoms (186)
- Treatment (1770)
First targeted drug may end cancer-promoting Skp2's days of dodging bullets
3 minute read | Published August 01, 2013
Medically Reviewed | Last reviewed by an MD Anderson Cancer Center medical professional on August 01, 2013
A protein called Skp2, overexpressed in many types of cancer, for years has gotten away with promoting tumor growth and progression unhindered by effective treatments.
Hui-Kuan Lin, Ph.D., of Molecular and Cellular Oncology, has spent the last decade characterizing Skp2 and how it fuels cancer growth, and the past five years looking for a way to shut it down.
Lin teamed with Shuxing Zhang, M.D., Ph.D., in Experimental Therapeutics, to find an inhibitor that shuts down Skp2 among a galaxy of drug candidates. Their discovery, opening a completely new avenue for potential cancer treatment, was published today at the leading journal Cell.
The compound selectively attacked prostate, lung, liver and bone cancer cells in lab experiments while largely sparing normal cells. It also suppressed prostate cancer stem cells, which are thought to drive cancer progression and metastasis. In mouse models, the drug shrank tumors and overcame resistance to chemotherapy. "The beauty of this study is we identified an inhibitor and showed how it functions to block Skp2. Inhibitors often are discovered without an initial understanding of how they work," Lin said. Steps are under way to define the drug's potential off-target effects before it can advance to human clinical trials. In a series of major publications in recent years, Lin and colleagues have nailed down the details of the cancer-promoting effects of overactive Skp2:
- Destruction of a key protein in a process that renders cells senescent -- incapable of division.
- Activation of glycolysis, the processing of glucose into energy, the preferred diet of many cancer types.
"To begin such a search, to rationally design a drug, you must first understand the target's biology and then look at its structure and fully comprehend its complex interactions and how disrupting those will help treat the disease," Zhang said. "Once you understand those, you're ready to screen using computer models."
That analysis is important. "There are many more chemical compounds available than there are estimated stars in the universe," Zhang said. "We have a database with 10 million compounds, but our prescreening analysis narrowed our computerized search to 120,000."
Virtual screening of the 120,000 compounds revealed 25 candidates that connect to either or both of two binding pockets on Skp2. Additional analyses showed that Compound #25, also known as SZL-P1-41, effectively disrupted Skp2's activity.
The inhibitor plugs critical binding sites on Skp2, preventing it from connecting to its cousin Skp1 to form a complex, the first step in its two cancer-promoting functions, Lin said.
Cell line experiments confirmed the compound's binding ability and revealed that the drug attacks cancer by reversing the effects discovered by Lin's lab: the senescence program is turned on, the cancer-feeding glycolysis pathway is turned off.
Zhang and Lin have filed a patent on this work.
Additional information Cell paper MD Anderson news release