'Collateral lethality' may lead to new cancer treatments
BY Ron Gilmore
February 09, 2017
Medically Reviewed | Last reviewed by an MD Anderson Cancer Center medical professional on February 09, 2017
Cancer cells often delete genes that normally suppress tumor formation. These deletions also may extend to neighboring genes, an event known as “collateral lethality,” which may create new options for development of therapies for several cancers.
Scientists at MD Anderson Cancer Center have discovered that during early cancer development when a common tumor suppressor known as SMAD4 is deleted, a nearby metabolic enzyme gene called malic enzyme 2 (ME2) also is eradicated, suggesting the possibility of malic enzyme inhibitors as a novel therapy approach. Study findings were published recently in the journal Nature.
“In an effort to expand therapeutic strategies beyond oncogenic targets to those not directly linked to cancer development, we have identified collateral lethal vulnerability in pancreatic cancers that can be targeted pharmacologically in certain patient populations,” said Prasenjit Dey, Ph.D., postdoctoral fellow in Cancer Biology and co-author of the Nature article. “Genomic data across several cancers further suggest this therapeutic strategy may aid many cancer patients, including those with stomach and colon cancers.”
Read more about this study in MD Anderson’s newsroom.