This phase II trial studies how well lenvatinib and pembrolizumab work in treating patients with anaplastic thyroid cancer that is stage IVB and has spread to nearby tissue or lymph nodes (locally advanced) and cannot be removed by surgery (unresectable), or stage IVC that has spread to other places in the body (metastatic). Lenvatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Given lenvatinib and pembrolizumab may work better than giving either one alone in treating stage IVB or C anaplastic thyroid cancer.
This trial studies how well dabrafenib, trametinib, and intensity modulated radiation therapy (IMRT) work together in treating patients with BRAF mutated anaplastic thyroid cancer. Dabrafenib and trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy beams to kill tumor cells and shrink tumors. Giving dabrafenib, trametinib, and IMRT together may kill more tumor cells.
Papillary thyroid cancer (PTC) is the most common form of differentiated thyroid cancer (DTC). The traditional first line treatment for patients with advanced DTC after surgical resection is radioactive iodine (RAI) therapy. However, less than a quarter of patients with lung metastases will achieve a complete response to RAI therapy, and this therapy carries the risk of pulmonary fibrosis and an increasingly recognized risk of secondary malignancies.
This is a Phase 1/2, open-label, first-in-human (FIH) study designed to evaluate the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary antineoplastic activity of pralsetinib (BLU-667) administered orally in participants with medullary thyroid cancer (MTC), RET-altered NSCLC and other RET-altered solid tumors.
The purpose of this study is to assess the safety and tolerability and determine the recommended Phase 2 dose of AIC100 Chimeric Antigen Receptor (CAR) T cells in patients with relapsed/refractory poorly differentiated thyroid cancer and anaplastic thyroid cancer, including newly diagnosed.
This phase II trial studies the effect of pembrolizumab, dabrafenib, and trametinib before surgery in treating patients with BRAF V600E-mutated anaplastic thyroid cancer. BRAF V600E is a specific mutation (change) in the BRAF gene, which makes a protein that is involved in sending signals in cells and in cell growth. It may increase the growth and spread of tumor cells. Dabrafenib and trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Pembrolizumab, dabrafenib, and trametinib may help to control BRAF V600E-mutated anaplastic thyroid cancer when given before surgery.
This research is being done to evaluate the safety and efficacy of neoadjuvant lenvatinib on surgical outcomes of patients with invasive extrathyroidal differentiated thyroid cancer (DTC). This research study involves a study drug called lenvatinib
People With Medullary Thyroid Cancer Make Decisions With...
This trial investigates whether hyperpolarized magnetic resonance imaging (hpMRI) can predict treatment response in patients with thyroid cancer and other malignancies of the head and neck undergoing radiation therapy and/or receiving systemic therapy before surgery. An hpMRI is like a standard MRI but involves the use of an imaging contrast agent called hyperpolarized 13-C-pyruvate. Diagnostic procedures, such as hpMRI, may predict a patient's response to treatment and may help plan the best treatment.
with metastatic differentiated thyroid Cancer MD Anderson Study...Agent Description Papillary thyroid cancer (PTC) is a