The objective of this study is to see if providing an appropriate therapy based on the genomic testing of prostate tumour tissue will result in an improved clinical response. Each participant will be treated with 8 weeks of a luteinizing hormone-releasing hormone agonist (LHRHa) plus apalutamide (APA) while genome sequence characterization is being done. Participants with biopsy specimens deemed unevaluable for genomic testing will remain on LHRHa plus APA for an additional 16 weeks. Participants with evaluable tissue will be assigned to one of the open-label sub-studies on the basis of genomic profiling results. Within each group, they will be randomized to a specific treatment arm either LHRHa plus APA alone or adding abiraterone acetate and prednisone, docetaxel or niraparib. The study will evaluate the response rate and outcomes after radical prostatectomy in each arm of the trial.
This phase III trial uses the Decipher risk score to guide therapy selection. Decipher score is based on the activity of 22 genes in prostate tumor and may predict how likely it is for recurrent prostate cancer to spread (metastasize) to other parts of the body. Decipher score in this study is used for patient selection and the two variations of treatment to be studied: intensification for higher Decipher score or de-intensification for low Decipher score. Patients with higher Decipher risk score will be assigned to the part of the study that compares the use of 6 months of the usual treatment (hormone therapy and radiation treatment) to the use of darolutamide plus the usual treatment (intensification). The purpose of this section of the study is to determine whether the additional drug can reduce the chance of cancer coming back and spreading in patients with higher Decipher score. The addition of darolutamide to the usual treatment may better control the cancer and prevent it from spreading. Alternatively, patients with low Decipher risk score will be assigned to the part of the study that compares the use of radiation treatment alone (de-intensification) to the usual approach (6 months of hormone therapy plus radiation). The purpose of this part of the study is to determine if radiation treatment alone is as effective compared to the usual treatment without affecting the chance of tumor coming back in patients with low Decipher score prostate cancer. Radiation therapy uses high energy to kill tumor cells and reduce the tumor size. Hormone therapy drugs such as darolutamide suppress or block the production or action of male hormones that play role in prostate cancer development. Effect of radiation treatment alone in patients with low Decipher score prostate cancer could be the same as the usual approach in stabilizing prostate cancer and preventing it from spreading, while avoiding the side effects associated with hormonal therapy.
and Testing FAQs Cancer Screenings Cancer Screenings Cancer Screenings Home Mammograms & Breast Cancer Screening Cervical Cancer Screening Colorectal Cancer Screening Endometrial Cancer Screening Liver Cancer Screening Lung Cancer Screening Mobile Mammography Ovarian Cancer Screening Prostate Cancer Screening Skin Cancer Screening Women's Cancer Screening Men's Cancer Screening Cancer Prevention Center The Lyda Hill Cancer Prevention Center provides cancer risk assessment, screening...
This phase II trial studies how well abiraterone acetate, prednisone, and apalutamide work in treating patients with hormone-naive prostate cancer that has spread to other places in the body. Androgen can cause the growth of prostate cancer cells. Antihormone therapy, such as abiraterone acetate and apalutamide may lessen the amount of androgen made by the body.
This phase III trial studies how well standard systemic therapy with or without definitive treatment (prostate removal surgery or radiation therapy) works in treating participants with prostate cancer that has spread to other places in the body. Addition of prostate removal surgery or radiation therapy to standard systemic therapy for prostate cancer may lower the chance of the cancer growing or spreading.
Researchers are looking for a better way to treat men at high-risk of biochemical recurrence (BCR) of prostate cancer. BCR means that in men who had prostate cancer and were treated by either surgery and/ or radiation therapy, the blood level of a specific protein called PSA rises. PSA is a marker of prostate cancer cells activity. The PSA increase means that the cancer has come back even though conventional imaging such as computed tomography (CT) scans, magnetic resonance imaging (MRI) and bone scans does not show any lesion of prostate cancer. Recently a more sensitive imaging method called prostate-specific membrane antigen \[PSMA\] positron emission tomography \[PET\]) /computed tomography \[CT\]) scan may identify prostate cancer lesions not detectable by conventional imaging. Men with BCR have a higher risk of their cancer spreading to other parts of the body, particularly when PSA levels raised to a certain limit within a short period of time after local therapies. Once the cancer spreads to other parts of the body, it can become even harder to treat. In men with prostate cancer, male sex hormones (also called androgens) like testosterone can help the cancer grow and spread. To reduce androgens levels in these patients, there are treatments that block androgens production in the body called androgen deprivation therapy (ADT). ADT is often used to stop prostate cancer. Another way to stop prostate cancer growth and spread is to block the action of androgen receptors on prostate cancer cells called androgen receptor inhibitors (ARIs). The new generation ARIs including darolutamide can block the action of androgens receptors and are available for the treatment of prostate cancer in addition to ADT. It is already known that men with prostate cancer benefit from these treatments. The main objective of this study is to learn if the combination of darolutamide and ADT prolongs the time that the participants live without their cancer getting worse, or to death due to any cause, compared to placebo (which is a treatment that looks like a medicine but does not have any medicine in it) and ADT given for a pre-specified duration of 24 months. To do this, the study team will measure the time from the date of treatment allocation to the finding of new cancer spread in the participants by using PSMA PET/CT, or death due to any cause. The PSMA PET/CT scans is performed using a radioactive substance called a "tracer" that specifically binds to the prostate-specific membrane antigen (PSMA) which is a protein often found in large amounts on prostate cancer cells. To avoid bias in treatment, the study participants will be randomly (by chance) allocated to one of two treatment groups. Based on the allocated treatment group, the participants will either take darolutamide plus ADT or placebo plus ADT twice daily as tablets by mouth. The study will consist of a test (screening) phase, a treatment phase and a follow-up phase. The treatment duration is pre-specified to be 24 months unless the cancer gets worse, the participants have medical problems, or they leave the study for any reason. In addition, image guided radiotherapy (IGRT) or surgery is allowed and your doctor will explain the benefits and risks of this type of therapy. During the study, the study team will: * take blood and urine samples. * measure PSA and testosterone levels in the blood samples * do physical examinations * check the participants' overall health * examine heart health using electrocardiogram (ECG) * check vital signs * check cancer status using PSMA PET/CT scans, CT, MRI and bone scans * take tumor samples (if required) * ask the participants if they have medical problems About 30 days after the participants have taken their last treatment, the study doctors and their team will check the participants' health and if their cancer worsened. The study team will continue to check this and regularly ask the participants questions about medical problems and subse
This phase II trial studies the effect of erdafitinib in treating patients with prostate cancer that grows and continues to spread despite the surgical removal of the testes or drugs to block androgen production (castration-resistant). Erdafitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving erdafitinib may help control disease in patients with castration-resistant prostate cancer. In addition, studying samples of blood, tissue, plasma, and bone marrow from patients with castration-resistant prostate cancer in the laboratory may help doctors learn more about changes that occur in deoxyribonucleic acid (DNA) and identify biomarkers related to cancer.
This phase II trial studies how well apalutamide and abiraterone acetate work in treating participants with castration resistant prostate cancer that has spread to other places in the body (metastatic). Abiraterone acetate and apalutamide may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunosuppressive therapy, such as prednisone, is used to decrease the body's immune response and may improve bone marrow function. Giving apalutamide, abiraterone acetate, and prednisone may work better in treating participants with castration resistant prostate cancer.
This phase II trial studies the effect of androgen ablation therapy with or without niraparib after standard of care radiation therapy in treating patients with prostate cancer that has not spread to other parts of the body (localized) or that has spread to nearby tissue or lymph nodes (locally advanced). Androgen ablation therapy (also known as hormone therapy) lowers the levels of male hormones called androgens in the body. Androgens stimulate prostate cancer cells to grow. There are 2 types of androgen ablation therapy given in this study: AAP + ADT and Apa + ADT. AAP + ADT is the treatment combination of the drugs abiraterone acetate and prednisone (AAP) given with androgen deprivation therapy (ADT, also known as androgen deprivation therapy or androgen suppression medication, which is used as standard of care to lower testosterone levels in men with high risk localized or metastatic prostate cancer). Apa + ADT is the treatment combination of the drug apalutamide (Apa) given with ADT. Androgen ablation therapy with or without niraparib after radiation therapy may help to control the disease in patients with prostate cancer.
This phase III trial compares less intense hormone therapy and radiation therapy to usual hormone therapy and radiation therapy in treating patients with high risk prostate cancer and low gene risk score. This trial also compares more intense hormone therapy and radiation therapy to usual hormone therapy and radiation therapy in patients with high risk prostate cancer and high gene risk score. Apalutamide may help fight prostate cancer by blocking the use of androgen by the tumor cells. Radiation therapy uses high energy rays to kill tumor cells and shrink tumors. Giving a shorter hormone therapy treatment may work the same at controlling prostate cancer compared to the usual 24 month hormone therapy treatment in patients with low gene risk score. Adding apalutamide to the usual treatment may increase the length of time without prostate cancer spreading as compared to the usual treatment in patients with high gene risk score.