request an appointment online.
- Diagnosis & Treatment
- Cancer Types
- Acute Lymphocytic Leukemia (ALL)
- Acute Lymphocytic Leukemia Treatment
Acute Lymphocytic Leukemia Treatment
As home to one of the world's leading leukemia programs, MD Anderson's Leukemia Center and Stem Cell Transplantation and Cellular Therapy Center bring together internationally renowned physicians with a specialized support team to customize your care. These highly experienced experts communicate and collaborate daily, ensuring you receive comprehensive leukemia treatment.
Many of these doctors focus not just on leukemia, but on specific types of leukemia, giving them a deep level of knowledge and experience to draw on when designing treatment plans.
The goal of leukemia treatment is to put the disease into remission and ultimately cure the patient. For leukemia, complete remission usually means that the patient’s bone marrow has no detectable microscopic evidence of the disease and his or her blood counts have returned to normal.
Even with normal blood counts, many leukemia patients require ongoing maintenance therapy to stay in remission. In some cases, patients in remission undergo a stem cell transplant to maintain remission.
Patients who remain in continued complete remission for an extended period of time are considered cured. This means they have an extremely low chance of recurrence. The exact amount of time it takes to be considered cured differs among leukemia types, but it is typically measured in years.
Acute lymphocytic leukemia (ALL) treatment plans
Newly diagnosed adult ALL patients typically undergo chemotherapy, which is given in three phases. Depending on the features of the patient’s cancer, targeted therapy may also be prescribed.
If the cancer returns or does not respond to treatment, patients may undergo a stem cell transplant.
Patients may qualify for CAR T cell therapy if they have been treated unsuccessfully with other therapies.
Chemotherapy
Chemotherapy drugs kill cancer cells, control their growth or relieve disease-related symptoms. Chemotherapy may involve a single drug or a combination of two or more drugs, depending on the type of cancer and how fast it is growing.
Chemotherapy for ALL is usually given in three phases:
- Remission induction: This is an intense phase of treatment designed to kill leukemia cells in the blood and bone marrow. It usually requires a hospital stay. The goal is to bring cancer into remission.
- Consolidation: This phase of chemotherapy is meant to kill any remaining cancer cells that survived the induction phase. This phase usually lasts a few months.
- Maintenance: In the maintenance phase, patients receive a lower dose of chemotherapy to stop the cancer from returning. ALL patients receive maintenance chemotherapy for about two years.
Patients may also be given a small dose of chemotherapy in their central nervous system to prevent the disease from spreading to this area. Stem cell transplant patients also may undergo chemotherapy to prepare their body for the procedure.
Learn more about chemotherapy.
Targeted therapy
Targeted therapy drugs are designed to stop or slow the growth or spread of cancer. This happens on a cellular level. Cancer cells need specific molecules (often in the form of proteins) to survive, multiply and spread. These molecules are usually made by the genes that cause cancer, as well as the cells themselves. Targeted therapies are designed to interfere with, or target, these molecules or the cancer-causing genes that create them.
Learn more about targeted therapy.
Stem cell transplantation
A stem cell transplant (also known as a bone marrow transplant) is a procedure that replaces cancerous bone marrow with new, healthy bone marrow stem cells. Stem cell transplants are usually given after an intense round of chemotherapy that kills the patient’s existing bone marrow cells and prepares the body for transplant. Patients usually must stay in the hospital for three to four weeks after the procedure.
A stem cell transplant may be needed for patients whose leukemia has returned or has not responded to standard treatments. It may also be recommended if the patient has a high-risk form of leukemia that would make a cure with standard treatments unlikely. This treatment can be physically challenging, so it is typically not given to patients who are older or otherwise unhealthy.
Learn more about stem cell transplants.
Radiation therapy
Radiation therapy uses powerful beams of energy to kill cancer cells. Since leukemia cells travel in the blood stream, there is no distinct tumor to target with radiation therapy. Instead, radiation may be used when the disease has spread to the central nervous system.
Learn more about radiation therapy.
CAR T cell therapy
T cells are a type of immune system cell. They help the immune system respond to disease and directly kill diseased cells. In Chimeric Antigen Receptor (CAR) T cell therapy, T cells are modified so they can recognize and attack cancer cells.
For ALL, CAR T cell therapy is a treatment option for patients who have been treated unsuccessfully with other therapies.
Learn more about CAR T-cell therapy.
Clinical trials
As a top-ranked cancer center, MD Anderson offers multiple clinical trials for ALL. Many of these cannot be found anywhere else. Trials explore new drug combinations and new drugs, including targeted therapies and immunotherapies.
Learn more about clinical trials.
Some cases of leukemia can be passed down from one generation to the next. Genetic counseling may be right for you. Learn more about the risk to you and your family on our genetic testing page.
Treatment at MD Anderson
Clinical Trials
MD Anderson patients have access to clinical trials offering promising new treatments that cannot be found anywhere else.
Becoming Our Patient
Get information on patient appointments, insurance and billing, and directions to and around MD Anderson.
Counseling
MD Anderson has licensed social workers to help patients and their loved ones cope with cancer.
After completing a course of treatment, there are few words that sound better to a patient than “complete remission.” It’s an indication that the treatment has worked, and there is no evidence of cancer based on scans or lab tests.
However, there is a different phrase that can be somewhat confusing to patients – minimal residual disease (MRD). This term is used often by physicians when treating patients with blood cancers, such as leukemia, lymphoma or multiple myeloma.
MRD refers to cancer cells remaining after treatment that can’t be detected by those same scans or tests. But what exactly does it mean for patients?
To learn more about minimal residual disease, we spoke with leukemia specialist Ghayas Issa, M.D., of MD Anderson’s Myelodysplastic Syndromes (MDS) and Acute Myeloid Leukemia (AML) Moon Shot® team. Here’s what he shared.
How do you explain minimal residual disease to patients?
Minimal residual disease is a small number of cancer cells left in the body after treatment. These cells have the potential to come back and cause relapse in our patients.
In leukemia, for example, we look for response after chemotherapy treatment by looking under the microscope for cancer cells present in a bone marrow biopsy. When there are no cancer cells present, and the bone marrow is making normal cells, we call that a complete response.
However, we know that if we don’t do further treatment, a portion of these patients will experience a relapse. That means there were some leukemia cells hiding that we weren’t able to detect under the microscope. That is minimal residual disease, or perhaps a better term is measurable residual disease. Typically, these cells don’t cause any symptoms, but they have the potential to lead to a relapse.
If we can’t detect minimal residual disease under the microscope, how do we test for it?
We now have much more sensitive assays available to us that allow us to quantify MRD. These could include next generation genetic sequencing, where we can analyze bone marrow samples for genetic mutations. If there are mutations present, that means there is minimal residual disease, even though we can’t see anything under the microscope.
We can also use a technique called flow cytometry, which allows us look in the same samples for abnormal proteins on the surface of cells. By determining how many cells have abnormal proteins detected, we can get a better sense of residual cancer cells. Using these new assays, we routinely try to quantify whether a patient has MRD following standard treatment.
What are the implications for a patient who has evidence of minimal residual disease after treatment?
That’s difficult to say, because it’s not the same across all types of blood cancers. Some patients with MRD will have different responses than others. In general, if a patient has MRD, we need to do additional treatments to work toward the best outcome. If we do nothing, we know that the residual cells will cause a relapse.
It also depends on the timing of the MRD test. In my leukemia patients, if there is MRD after the first cycle of chemotherapy treatment, it tells me that I probably need to give more treatment — either a different medication or a different course of treatment. If there is still MRD after many rounds of chemotherapy, that is an indication that the patient may need to have a stem cell transplant, when otherwise it might not have been appropriate.
Ultimately, MRD is a marker that we need to be more aggressive in our treatment to try and prevent the cells from coming back.
What can cancer researchers learn from the residual cancer cells?
We can learn a great deal. These cancers can adapt to treatment, meaning the cancer we start with is not the same as what we have after treatment. By studying the minimal residual disease, we can learn more about what is left after treatment.
That helps us to do several things. First, it allows us to modify our treatment, either by adding medications that target specific vulnerabilities in the cancer cells, including medications that are especially good at killing even residual cells, or doing a stem cell transplant, which is able to take care of residual cells.
Currently, I work with a wonderful team through the MDS and AML Moon Shot to study these residual cancer cells in order to find new vulnerabilities. Through our research, we’re hoping to identify new treatments that we can use in the future to specifically eliminate minimal residual disease.
Request an appointment at MD Anderson online or by calling 1-877-632-6789
myCancerConnection
Talk to someone who shares your cancer diagnosis and be matched with a survivor.
Prevention and Screening
Many cancers can be prevented with lifestyle changes and regular screening.
Help #EndCancer
Give Now
Donate Blood
Our patients depend on blood and platelet donations.
Shop MD Anderson
Show your support for our mission through branded merchandise.